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1.0  SUMMARY 

 
We have developed a theory for recovering clusters of important information from sparse signal 
representations in distributed sensing applications. This theory is expected to be useful in 
streamlining networking and decoding operations over bandwidth constrained wireless networks. 
Using these results, we can for example transport and store a single combined measurement set, 
rather than multiple sets from all sensors. We show that via source separation and joint decoding, 
it is possible to recover essential information of the original signal from such combined 
measurements using progressive reconstruction which, in each step, relaxes variables related to 
only a single sensor. This progressive procedure results in a substantial reduction in the number 
of variables that are decoded at each step, and consequently, a much reduced decoding time. We 
show that the reconstructed signal can still have sufficient accuracy for some target detection 
tasks. We demonstrate these results with image recovery for simple target detection examples. 
 
We have documented this work and related results in several papers, including: 
 
 “Separation-based Joint Decoding in Compressive Sensing,” 20th IEEE International 

Conference on Computer Communication and Networks (ICCCN 2011), August 2011. 
 “Measurement Combining and Progressive Reconstruction in Compressive Sensing, 

Military Communications Conference (MILCOM 2011), November 2011. 
 “Partitioned Compressive Sensing with Neighbor-Weighted Decoding, ” Military 

Communications Conference (MILCOM 2011), November 2011. 
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2.0  INTRODUCTION 

 
A compressive sensing encoding system can be described as follows [1] : 
 
 𝑦 = Φ 𝑥 (1)  
 
where x is an N-dimensional signal being sampled, Φ is an M × N measurement matrix 
containing random entries, and y is a vector of M measurements. We see that compressive 
measurements of y are random linear combinations of components of x. Suppose that x is 
K-sparse in the sense that it can be represented as a linear combination of K basis vectors in some 
basis, that is, x = ψs where ψ is an orthonormal transform, and s is a vector with no more than K 
nonzero coefficients. Then, if M > cK log (N/K) for some small constant c, it is possible to 
decode s with high probability, and recover x = ψs. Note that the number of measurements (M) is 
commensurate with the sparsity K of a signal. If K is very small in some properly chosen domain, 
then M can be much smaller than N. This implies high compression rates. A rich volume of 
literature examines the topic of compressive sensing, including the landmark work of Candes and 
Tao [2] and Donoho [1] . 
 
In this work, we address the use of compressive sensing in distributed sensing applications. In 
such a system, each sensor may gather compressive measurements for a specific region of a 
partitioned domain. That is, these distributed sensors perform partitioned encoding–one set of 
compressive measurements per partition–rather than standard encoding, as depicted in the middle 
and left sections of Figure 1, respectively. However, the aggregate size of all the measurements 
is proportional to the number of sensors and can result in large costs of transporting and storing 
these measurements, as well as a large decoding time for recovering signals from compressive 
measurements.  
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Figure 1: Methods of Encoding - (Left) Standard encoding, where the given signal x covers 

the entire domain. (Middle) Partitioned encoding, where partitions of x cover various 
regions of the domain. (Right) Combined encoding merges the measurements from all 

partitions to create a single measurement set 
 

To reduce the number of measurements, we consider in this work a combining approach, as 
depicted by the Combined Encoding scheme of Figure 1. We show that we can combine multiple 
measurement sets from different sensors, by simply adding together the corresponding 
measurements to form a single measurement set. We can then transport and store a single 
measurement set, rather than measurement sets of multiple subproblems as depicted in Figure 2.  
In this example, there are 9 regions. For each region, we assume that there is one sensor 
encoding target information in that region, and sending compressed measurements to a hub to be 
combined. The hub combines the compressed measurements and transmits them to a remote 
decoder over a low-bandwidth link which benefits from measurement compression/combining. 
 

 

Figure 2: Partitioned scenario of tracking targets in an area divided into multiple regions.  
 
In measurement combining, we will use a single measurement set to recover multiple sets of 
variables–one for each sensor in the distributed system. Since there are multiple sensors, this 
increases the problem size multiple times, and leads to another issue: high decoding cost. We 
note that the computational cost of the L1-minimization step in decoding grows superlinearly 
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with the problem size. If the signal has N components, then L1-minimization by linear 
programming [2] can yield a decoding time of at least O(N3). This means that the decoding cost 
can be prohibitively expensive when N is large. Other decoding methods such as matching 
pursuit [3] , [4] are less expensive, but they only guarantee weaker error bounds in the recovered 
solution, and provide less reliable recovery. When these low-complexity methods fail, we still 
need to resort to L1-minimization. It is therefore desirable to divide the problem into 
subproblems, each focusing on just one region at a time to reduce decoding time. 
 
We show that we can reconstruct an approximate recovery for the original signal from the 
combined measurements by progressively decoding the subset of variables associated with just a 
single sensor at a time. This can significantly reduce decoding time in distributed sensor systems, 
as we will see later.  Further, we demonstrate that the reconstructed signal resulting from 
progressive reconstruction can still have sufficient accuracy for target detection tasks. 
 
Measurement combining and progressive reconstruction together can therefore reduce both the 
number of measurements and decoding time in distributed sensor systems, while yielding enough 
decoding accuracy for target detection. The approach is applicable to various application 
scenarios. For instance, as illustrated later, when an area is monitored by multiple sensors, each 
sensor may monitor its own nearby region for targets. Then we can use the method of this report 
to combine the measurements from such sensors, decode the combined measurements 
progressively, and finally detect targets from the reconstructed signal. 
 
The measurement combining and progressive reconstruction ideas are based on some of our 
earlier theoretical work [5] . There we showed that via source separation and joint decoding, it is 
possible to separate out from combined measurements distinguished signal components in 
subproblems.  The current work focuses on applications of these ideas in distributed sensor 
systems, and illustrates the combining approach with some simple image recovery examples for 
target detection. 
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3.0  METHODS, ASSUMPTIONS, AND PROCEDURES 

 
We describe the measurement combining method in detail using an illustrative scenario. Suppose 
that we want to detect K targets from compressed measurements taken over regions, as depicted 
in Figure 2. Each sensor obtains a source signal vector xi of length N from its own region, and 
then applies an M × N measurement matrix Φi with M << N, to obtain a compressed 
measurement vector yi = Φi xi of length M. The sensor then sends yi to a hub node where the 
measurements may be combined.   

3.1  Design Space 
 
We describe a design space of methods that our system could use to reconstruct the signals of all 
regions. The first two are conventional methods that will serve as baselines for comparison 
purposes, while the last one is the focus of this work.  
 
Conventional Decoding. Suppose measurement matrices Φi are all chosen independently at 
random. Furthermore, suppose the hub computes a sum y of the measurements yi before sending 
them out; then, we can write the sum as follows:  
 
 

𝑦1 + 𝑦2 +  ⋯  + 𝑦𝑛 = [Φ1 Φ2 ⋯ Φ∝] �
𝑥1
𝑥2
⋮
𝑥∝
� (2)  

 
We can let 𝑦 =  𝛴𝑦𝑖, use x to denote the column vector on the right-hand side of Eq. (2), and let  
Φ be an M × αN matrix which is the column concatenation of M × N matrices Φ1… Φα. Then we 
have 
 𝑦 = Φ 𝑥 (3)  
 
This is in the conventional compressive sensing form.  Thus, we can decode x using the 
standard formulation 
 
 𝑦 = Φ 𝜓𝑠 (4)  
 
with a transform ψ operating on an αN-size vector of coefficients s. While this formulation 
requires a low number of measurements, cK log (αN/K), it has a high decoding time. For 
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example, if L1 -minimization is used, there can be an α3-fold increase in the decoding time for 
each subproblem, yi = Φi xi, due to an α-fold increase of the problem size from N to αN. The 
increase of variables is an issue we address in this work. 
 
Partitioned Decoding. A simple way to avoid solving an αN-size problem instance is for the 
hub not to sum up the measurements yi, but instead forward them directly to the decoder. Thus, 
the decoder ends up with α size-N compressive sensing problem. 
 
 𝑦𝑖 = Φ𝑖 𝑥𝑖 (5)  
 
This can be decoded much faster using the form 
 
 𝑦𝑖 = Φ 𝑖𝜓𝑖𝑠𝑖 (6)  
 
where the transform 𝜓𝑖 now operates on size-N vectors.  However, this formulation requires 
that the hub transmit a larger amount of data; specifically, the total number of measurements to 
be transmitted is αcK log (N/K). (Note that if fewer than cK log (N/K) measurements are used per 
region, then the signal may not be decodable if all K targets happen to be in the same region.) 
 
Progressive Reconstruction. This is the decoding method we propose in this work. As in 
conventional decoding, the hub will again compute the sum of measurements 𝑦 =  𝛴𝑦𝑖, as in Eq. 
(2). How can we decode it faster than solving a size-αN problem? To answer this, let us consider 
the following decoding setup: 
 
 

𝑦 = [Φ1 Φ2 ⋯ Φ∝] �

𝜓1 0 ⋯ 0
0 𝜓2 ⋯ 0
0
0

0
0

⋱  0
0   𝜓∝

� �
𝑠1
𝑠2
⋮
𝑠∝
� (7)  

 
This is, again, a size-αN problem with a high decoding cost; however, note that each 𝜓𝑖 here is  
α-times smaller than the one used in Eq. (3). We decode si separately using the constraint 
 
 𝑦𝑖 = Φ 𝑖𝜓𝑖𝑠𝑖 (8)  
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Note that this constraint is approximate since it ignores nonzero contributions of 𝑠𝑗≠𝑖 to y [5] ; 
nevertheless, in certain applications such as our target detection scenarios with sparse clusters, it 
is expected that these ignored contributions will be relatively small. Furthermore, as soon as 
larger si’s are decoded for a region, we can use them to represent the entire region. This reduces 
the total number of variables in the subsequent decoding of other regions. The quality of each 
decoding step improves as more regions are decoded and represented with a reduced number of 
variables. Thus we call the method progressive reconstruction. 
 

 
 

Figure 3: Methods of decoding compressed data - (Left) Reconstructing all regions of the 
combined measurement at once. (Middle) Decoding each partition separately. (Right) 

Progressive reconstruction focusing on a single region at a time while considering 
contributions from a few of the most significant variables in previously decoded regions.  

 
Figure 3 depicts the three approaches. We note that conventional decoding involves a high 
decoding cost, due to a large number of variables.  Partitioned decoding has a reduced cost, but 
at the expense of a poor compression rate. So, we propose the third solution—progressive 
reconstruction. Our method has a relatively high compression rate and low decoding cost, while 
achieving a decoding accuracy sufficient for target detection.  In the rest of the report we 
describe progressive reconstruction in detail, and evaluate its performance. 
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3.2  Progressive Reconstruction on Combined Measurements 
 
For simplicity, we describe our progressive reconstruction method for a partitioned problem 
involving only α = 3 subproblems. Note that the description generalizes to any number of 
subproblems. Suppose that the signals for the three regions are: x1, x2, and x3. As described 
earlier, we encode them with the measurement matrices Φi  to yield three measurement sets, yi = 
Φi xi, for i = 1, 2 and 3. We combine the yi’s to form y: 
 
 𝑦 =  𝑦1 +  𝑦2  + 𝑦3 (9)  
 
In our scenario we assume that the targets are clustered, meaning that the large variables are 
concentrated in only a few of the regions.   
 
The first step of the reconstruction method is to identify the region that contains the largest 
number of targets. This region can be chosen according to prior knowledge; for example, we 
might be able to predict a target’s location based on past observations. In other applications 
where no such side information is available, the best region can still be determined by observing 
preliminary decoding results. A generic method works by decoding the combined measurements 
as follows: 
 

𝑠𝑖∗ = arg𝑚𝑖𝑛 |𝑠𝑖|𝑙1    subject to  𝑦𝑖 = Φ 𝑖𝜓𝑖𝑠𝑖 (10)  
 
for each region i. In the best region, by definition, the energy will be more concentrated on a few 
coefficients, allowing us to find a sparser solution. Given sufficient measurements, we will have 
enough constraints so that a sparse solution for other regions is unlikely. Therefore, we identify 
the region with the smallest |𝑠𝑖∗|𝑙1 to be the best region. 
 
Finding this region is important because y has contributions from all three x, and each 𝑠𝑖∗ may 
contain interference from other regions. Of these, the signal xi corresponding to a region that has 
the most targets will experience the least interference from other sources, and will have the best 
reconstruction result. 
 
We can now begin the progressive decoding stage. Suppose we find that the targets are 
concentrated in region 1 from the result of the first step. We then identify the basis associated 
with the largest variables in the reconstructed 𝑠1∗ , denoted as 𝑠̂1, and use it to represent x1 in the 
subsequent steps. Specifically, we form 𝜓�1 by keeping only the columns associated with the 
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larger coefficients, as shown in Figure 4.   
 

 
 

Figure 4: Forming a reduced basis for region 1 
 
We continue the progressive decoding by reconstructing s2 in the second round as follows: 
 
 𝑠𝑖∗ = arg𝑚𝑖𝑛 ��𝑠̂1𝑠2

��
𝑙1 

   subject to   𝑦 = [Φ1𝜓�1 Φ2𝜓2] �𝑠̂1𝑠2
� (11)  

 
Since 𝑠̂1 includes all the large variables in s1, there is little or no interference from x1 when we 
reconstruct s2. Similar to the first round, we find the most important basis for s2, and proceed to 
decode s3 in the same fashion. 
 
In each round, we slightly increase the number of variables to decode by including the basis 
vectors that are deemed to be important from all previous rounds. If no round misses important 
basis columns for the regions in question, then at the end of this process we will be solving an 
interference-free signal. 
 
Compared to the progressive reconstruction process, conventional decoding which decodes 
signals from all regions in one shot exploits the sparsity better, as it represents the signal with a 
larger selection of basis vectors (a larger dictionary).  However, in a real-world application like 
target tracking, we might have knowledge about the locations of the targets from a previous state. 
For example, if we know that most targets are in region i at a previous time, it is reasonable to 
assume that region i and its surrounding regions are more likely to contain the targets. In the 
progressive reconstruction method, we could take advantage of such knowledge by having early 
rounds focus on these regions. 
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4.0  RESULTS AND DISCUSSION 

 

4.1  A Test Scenario 
 
We consider a simple example in distributed sensor systems to demonstrate the idea of 
measurement combining and progressive reconstruction.  
 
Suppose we want to track K targets across 9 regions, as depicted in Figure 2. The sensors 
compress the sensed images xi by computing 𝑦𝑖 = Φ𝑖 𝑥𝑖. A hub gathers the measurements yi and 
performs a simple summing operation to get y = y1 + y2 + … + y9, and then transmits y back to 
us.   
 
In this example, we detect one or more copies of the same bee-like target as shown in Figure 5. 
To identify targets, we build a dictionary where each basis function represents the target at a 
distinct position in the region, as shown in Figure 5.  More precisely, in the dictionary matrix, 
each column is a vector representation of the input image with the target at a distinct location. An 
image with k targets can be represented by k coefficients in this dictionary matrix.  We can view 
the input signal x as the sum of those images, each containing a single instance of the target at a 
distinct location. Recovering x means finding these image components, or a vector s such that 
 
 𝑥 =  𝐷𝑠 (12)  
 
where D is the dictionary matrix defined above. When there are just a few targets present in the 
signal, s is sparse and this problem will be solvable by compressive sensing decoding using the 
dictionary as the basis 𝜓𝑖 described earlier.  This is similar to finding parameterized shapes in 
images as described in [6] . For simplicity, we assume the background can be subtracted from the 
measurements. 
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Figure 5: Dictionary matrix representation.   
 
As described earlier, we perform a reconstruction for each region under some noise model and 
determine where the targets are most concentrated. Then, by progressively decoding one of the 
remaining regions at a time, we gradually improve the reconstruction until all regions are 
decoded. The whole process takes at most 9 + 8 + 7:: + 1 decoding steps, where there are roughly 
N variables to solve each step. Suppose that `1-minization is used in decoding. Then, the total 
cost is 45CN3, for some scaling constant C. In contrast, if we were to decode the entire image 
(9N) at once, the cost would be C(9N)3 = 729CN3. 

4.2  Experiments and Performance Results 
 
We examine the performance of progressive reconstruction in three cases: 
1) Four targets spread across two regions; 
2) Five targets spread across three regions; 
3) Five targets spread across three regions with Gaussian noise (SNR ≈ 13). 
 
The size of each region is 30 × 30 pixels. The three progressive cases each have 8100 pixels in 
total, whereas a fourth case (for comparison with case 3) uses standard decoding and has 5400 
pixels. 60 measurements are used for the first two cases (compression ratio < 1%), 405 
measurements are used for the third case (compression ratio = 5%), and 1200 measurements are 
used for the fourth case (standard decoding). We use L1-magic as the decoder for the first three 
cases, and CoSaMP [4] for the last case. 
 
Case 1 
To begin progressive reconstruction, we must first find a region to start with. In the first round, 
shown in Figure 6, we decode the nine regions independently. Figure 6 (a) shows the decoded 
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results for each region decoded independently. The center region has the least interference from 
the other regions (displays pronounced targets), resulting in a better reconstruction.  It is 
observed that the L1-norm of this region is also smaller.  Thus, we start the second round based 
on the reconstruction of the center region. In the second round, we reconstruct the signal in two 
regions together using a reduced basis for the center region as described earlier. We continue to 
recover other regions until all signals are decoded.  Figure 7 shows three snapshots of the 
decoding process. The first decoding round revealed that the targets are most concentrated in the 
middle region. Then the second round of decoding uses the information from the first round to 
improve the reconstruction. Notice that since there are no targets left in other regions, the 
reconstruction in the second round is an exact reconstruction.  This is due to the lack of 
interference from other regions.   

 

 
Figure 6: First decoding round for Case 1 - (a) The reconstructed images for each region. 

(b) The sorted magnitude of reconstructed coefficients for regions.  
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Figure 7: Progressive reconstruction for Case 1.  

 
Case 2 
Here we use the same decoding method as Case 1, but now there are three regions that contain 
targets. Figure 8 shows the first three rounds of the decoding process. As in Case 1, the first 
decoding round reveals that the targets are most concentrated in the center region. However, the 
reconstruction in round 1 is worse than the previous case, because now there is interference from 
the two additional targets located in two other regions. As in Case 1, the second round of 
decoding uses the information from the first round to improve the reconstruction. Since there is 
interference from a target that has not yet been detected, the reconstruction in the second round is 
still noisy. The reconstruction is improved again in the third round.  Notice that the interference 
is progressively reduced until it falls to zero, and in this case, the reconstruction becomes exact 
after the third round. 

 
Figure 8: Progressive reconstruction for Case 2.  
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Case 3 
In this case the signal is corrupted by noise. Figure 9 shows the results from each of the 9 rounds 
of the progressive reconstruction.  Note, we focus on one region each round of decoding.  The 
recovery in the first round is heavily distorted, but the three targets in the center region are still 
distinguishable. We only keep the bases associated with the largest 2% of the coefficients (refer 
to Figure 4). Note that distortion is most significant in the newest regions being solved; this is 
because we used reduced bases to represent the signals for regions that have already been 
processed, whereas the latest region added to the decoding is represented with a full dictionary.  
The results of progressive reconstruction and standard decoding (case 4) are compared in Figure 
10. Both approaches locate the targets successfully, but the error from noise is distributed in a 
different way. While providing comparable results, the progressive reconstruction process is 10 
times faster, assuming O(N3) decoding time. 
 

 
Figure 9: Progressive reconstruction for Case 3, a noisy image.  
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Figure 10: Comparison between progressive decoding (right) and decoding all 

regions (left) at once 
 

4.3  Discussion 
 
In the experiments, the reconstruction process can take advantage of additional side information. 
If we know the targets are clustered in a small set of regions, then our method can first identify 
the most populated region, and improve the reconstruction progressively at a low cost. 
Furthermore, if we know where these targets are most likely to be, this information can help us 
find a better reconstruction sequence and thus save more time. This can be a reasonable 
assumption for some surveillance systems where the targets are constantly monitored. When a 
number of measurements used is relatively small, there could be blocking artifacts resulting from 
the progressive reconstruction. In this case we can further apply methods such as partitioned 
compressive sensing with neighbor-weighted decoding [7] to ensure that the recovered signals 
for neighboring partitions will be compatible.  Compressive sensing for distributed sensor 
systems is also studied in the context of collaborative decoding at a central node, such as a UAV, 
where the decoded results for one sensor can enhance the decoding for other sensors [8] .  There 
are other approaches that also directly benefit from side information. Reweighted approaches [9] , 
[10]  can use side information to guide the decoding process to a more desirable solution. 
However, these methods only improve the reconstruction quality but not the decoding time. 
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5.0  CONCLUSIONS 

 
In this work, we take a perspective that an approximate signal reconstructed from compressive 
measurements just needs to be accurate enough for the target detection problem at hand. To this 
end, we presented a method of combining measurements in compressive sensing in order to 
lower the number of measurements, or equivalently to improve the compression ratio. In addition, 
we presented a progressive reconstruction method that can decode multiple signals from 
combined measurements with reduced transmission and decoding costs. We validate these results 
with target detection test cases. Our approach can reduce both measurement and decoding costs, 
while producing decoding results with sufficient accuracy for target detection. Results of this 
work are applicable to target-detection applications based on compressive sensing for which 
problem partitioning is desired and distributed sensing systems where compressive 
measurements from multiple sensors can be integrated. 
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7.0  LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

 
CoSaMP  Compressive Sampling Matching Pursuit 
SNR        Signal-to-Noise Ratio 
UAV   Unmanned Aerial Vehicle 
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